

Abstracts

Micromachined electro-mechanically tunable capacitors and their applications to RFIC's

A. Dec and K. Suyama. "Micromachined electro-mechanically tunable capacitors and their applications to RFIC's." 1998 *Transactions on Microwave Theory and Techniques* 46.12 (Dec. 1998, Part II [T-MTT] (1998 Symposium Issue)): 2587-2596.

Micromachined electro-mechanically tunable capacitors with two and three parallel plates are presented. Experimental devices have been fabricated using a standard polysilicon surface micromachining process. The two-plate tunable capacitor has a measured nominal capacitance of 2.05 pF, a Q-factor of 20 at 1 GHz, and achieves a tuning range of 1.5:1, The three-plate version has a nominal capacitance of 4.0 pF, a Q-factor of 15.4 at 1 GHz, and a tuning range of 1.87:1. The tuning ranges achieved here are near theoretical limits. Effects due to various physical phenomena such as temperature, gravity, and shock are examined in detail. An RF voltage-controlled oscillator with an integrated inductor and a micromachined tunable capacitor is also demonstrated. The active circuit and the inductor have been fabricated in a 0.5 μ m CMOS process. The voltage-controlled oscillator has been assembled by bonding together the CMOS and the micromachined parts. The 1.35 GHz voltage-controlled oscillator has a phase noise of -98.5 dBc/Hz at a 100 kHz offset from the carrier.

[Return to main document.](#)